Creating oral squamous cancer cells: a cellular model of oral-esophageal carcinogenesis.
نویسندگان
چکیده
Immortalization and malignant transformation are important steps in tumor development. The ability to induce these processes from normal human epithelial cells with genetic alterations frequently found in the corresponding human cancer would significantly enhance our understanding of tumor development. Alterations in several key intracellular regulatory pathways (the pRB, p53, and mitogenic signaling pathways and the telomere maintenance system) appear to be sufficient for the neoplastic transformation of normal human cells. Nevertheless, in vitro transformation models to date depend on viral oncogenes, most prominently the simian virus 40 early region, to induce immortalization and malignant transformation of normal human epithelial cells. Here, we demonstrate a transformation model creating oral-esophageal cancer cells by using a limited set of genetic alterations frequently observed in the corresponding human cancer. In a stepwise model, cyclin D1 overexpression and p53 inactivation led to immortalization of oral keratinocytes. Additional ectopic epithelial growth factor receptor overexpression followed by c-myc overexpression as well as consecutive reactivation of telomerase induced by epithelial growth factor receptor sufficed to transform oral epithelial cells, truly recapitulating the development of the corresponding human disease.
منابع مشابه
The Cancer Stem Cell Hypothesis in Oral Squamous Cell Carcinoma: A New Target for the Treatment
Within a single tumor clone, cells have significantly different abilities to proliferate and form new tumors. This has led to the hypothesis that most cells in a cancer have a limited ability to divide and only a small subset of distinct cells, the cancer stem cells (CSCs), has the capacity to self-renew and form new tumors . It has been proposed that the development of tumors is based exclusiv...
متن کاملComparative Evaluation of Immunohistochemical Expression of Endothelin A Receptor between Oral Squamous Cell Carcinoma and Normal Oral Mucosa
Background: Recent research has provided evidences indicating the importance of endothelin axis in carcinogenesis. According to our knowledge, there are little information about endothelin A receptor (ETA) expression in oral squamous cell carcinoma (OSCC). So, the aim of the present study was to evaluate the immunohistochemical expression of ETA in OSCC and normal oral mucosa (...
متن کاملCyclin D1 overexpression increases susceptibility to 4-nitroquinoline-1-oxide-induced dysplasia and neoplasia in murine squamous oral epithelium.
The cyclin D1 oncogene is frequently amplified/overexpressed in oral squamous cell carcinomas. Mice with overexpression of cyclin D1 targeted to the stratified squamous epithelia of the tongue, esophagus, and forestomach develop a phenotype of epithelial dysplasia at these sites. In this study, we examined the effect of cyclin D1 overexpression on susceptibility of mice to carcinogen-induced tu...
متن کاملOral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice.
PURPOSE Squamous cell carcinoma of the oral cavity is one of the most common human neoplasms, and prevention of these carcinomas requires a better understanding of the carcinogenesis process and a model system in which cancer chemoprevention agents can be tested. We have developed a mouse model using the carcinogen 4-nitroquinoline 1-oxide (4-NQO) in the drinking water to induce tumorigenesis i...
متن کاملGene expression profiling signatures for the diagnosis and prevention of oral cavity carcinogenesis-genome-wide analysis using RNA-seq technology
We compared the changes in global gene expression between an early stage (the termination of the carcinogen treatment and prior to the appearance of frank tumors) and a late stage (frank squamous cell carcinoma (SCC)) of tongue carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide (4-NQO) in a mouse model of human oral cavity and esophageal squamous cell carcinoma. Gene ontology and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 43 شماره
صفحات -
تاریخ انتشار 2005